
A -2 0 4 1)N PAGE or C Co yt OWN

A. TTLE ancsubje)s. TYPE Of NE00mi 6 PEImOD COVERED

Ada Compiler Validation summary Report Interna- 29 Nov. 1989 to 29 Nov . 1990
tional Business Machines Corporation, The IBM Development S. PLRA10"IalA. ULPORI bumbLR
y t ojlthe Ad LagaeI ~yi -gqeso 1. 1

7. £AJ1WOR43) 1. C0670ACI 00 GRANT SU1jjR614)
WrigTt-Patterson AFB
Dayton, OH, USA

3. P[4O~104616 04ANZA7100i AND ADDALSS 10. PROGIAk ELIMEl'. * f.t~IEI. IAS&
AREA 9 904a w%:? SUNILAS

Wright-Patterson AFB
Dayton, OH, USA

12. COh'!4DL.111 011iCE NAMOE AD APDRESS12 PO AI
Ada Joint Program Office
United States Department. of Defense1J LKUtALb
Washington# DC M001-3081

14. uQN%104:b6 AGEZT hAML & ADRS(fifeeto Cotoln Ofc)I. SICUR~ITI CLASS (ofth'speport)

Wrigh-PatersonAFBLNCLASSIFIED
Dayton, OH, UISA n0 /

16. 015 1I5V!10% SIAIlN~hr (efthisfiepo)

Approved for public release; distribution unlimited.

17. IDSIR.8.71 5IA-LuiV (aftheabJrtamtoel-Siock2C d~'r~~~,~f

UN:.LASSIFIED

It. $PPE ih!Af1 WDILS

13. RI YwRS (Contin~at on~ Powers# f Ift4)* En'f5,bAnvb

Ada Progriinming language. Ada Compiler Validation Suirtary Rep--rt, Ada
Col!piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVFv A1NS!PIL-STD-
1SI5A, Ada Joint Program Office, AJPO

20. ARSIrNAr OI (Cnlo o rotes so.f ofnecesery, iio 40f 5, &loci nvmbe'j

International Business Machines Corporation Wright-Patterson AFB, The IBM Development
System for the Ada Language AIX/RT follow-on, Version 1.1, IBM RT Follow-on under AIX,
Version 3.1 (Host & Target), ACVC 1.10.

D)D "'I 1473 Iiot.a uoassosot
I JAN 13 S/N *IL*IISD NCLASSIFED

90 04 10 139 StCulli011 CLASS311CAIZOf orIMIS PAGE (oinso~trd

AVF Control Number: AVF-VSR-352.0290
89-07-06-IBM

Ada COMPILER '.,
VALIDATION SUMMARY REPORT: .

Certificate Number: 891129W1.10198
International Business Machines Corporation

The IBM Development System for the Ada Language
AIX/RT Follow-on, Version 1.1

IBM RT Follow-on

Accesclcn Por

Completion of On-Site Testing: S-
29 November 1989 -TIS

DTIC TAB

Jutif cation

Prepared By:
Ada Validation Facility

ASD/SCOLnWright-Patterson AFB OH 45433-6503 Availabiltycod
IA', i an /or

Dist Special

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: The IBM Development System for the Ada Language
AIX/RT Follow-on, Version 1.1

Certificate Number: 891129W1.10198

Host: IBM RT Follow-on under
AIX, Version 3.1

Target: IBM RT Follow-on under
AIX, Version 3.1

Testing Completed 29 November 1989 Using ACVC 1.10

Customer Agreement Number: 89-07-06-IBM

This report has been reviewed and is apprc.ed.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organizationif" Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES. 1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation3-6
3.7.2 Test Method3-6
3.7.3 Test Site 3-8

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY IBM

CHAPTER 1

INTRODUCTION

This Validation Summary Report -(VS* describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability) -4ACVG)-- An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.- The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 29 November 1989 at Rockville MD.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-85A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures, Version 2.0, Ada Joint Program
Ofice, May 1989.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc. Tember 9.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

*ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

1-3

INTRODUCTION

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of idenLity functiuns used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: The IBM Development System for the Ada Language

AIX/RT Follow-on, Version 1.1

ACVC Version: 1.10

Certificate Number: 891129W1.10198

Host Computer:

Machine: IBM RT Follow-on

Operating System: AIX
Version 3.1

Memory Size: 16 Megabytes

Target Computer:

Machine: IBM RT Follow-on

Operating System: AIX
Version 3.1

Memory Size: 16 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. CzDacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop

statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
SHORT INTEGER and LONG FLOAT in package STANDARD. (See tests
B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which

constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Some of the default initialization expressions for record

components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision

as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) Sometimes NUMERICERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..Z (26 tests).)

(3) The* method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

(2) NUMERIC ERROR is raised when an array type with INTEGER'LAST +
2 components is with each component being a null array
declared. (See test C36202A.)

(3) NUMERIC ERROR is raised when ar array type with SYSTEM.MAX INT
+ 2 components with each component being a null array is
declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entiret' before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is not supported for procedures or
functions. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

2-4

CONFIGURATION INFORMATION

i. Generics.

(1) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA1O12A.)

(2) If a generic unit body or one of its subunits is compiled or
recompiled after the generic unit is instantiated, the unit
instantiating the generic is made obsolete. The obsolescence
is recognized at binding time, and the binding is stopped.
(See tests CA2009C, CA2009F, BC3204C, and BC3205D.)

(3) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

j. Input and output.

(1) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(2) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(3) Modes IN FILE and OUT FILE are supported for SEQUENTIAL 10.
(See tests CE2102D..E (2-tests), CE2102N, and CE2102P.) -

(4) Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT 10. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE31O2E and CE3102I..K (3 tests).)

(6) RESET and DELETE operations are supported for SEQUENTIALIO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECTIO. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

(9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

2-5

CONFIGURATION INFORMATION

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE211OB, and
CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading. (See
tests CE2107F..H (3 tests), CE211OD, and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 293 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 12 tests were required to successfully demonstrate the test objective.

The AVP concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1129 2035 17 26 44 3380

Inapplicable 0 9 280 0 2 2 293

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 573 544 245 172 99 161 332 129 36 250 341 300 3380

Inappl 14 76 136 3 0 0 5 0 8 0 2 28 21 293

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325.3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84M CD2A84N CD2B15C CD2D11B CD5007B CD50110
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 293 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

3-2

TEST INFORMATION

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C355081, C35508J, C35508M, and C35508N are not applicable because
they include enumeration representation clauses for BOOLEAN types
in which the representation values are other than (FALSE => 0,
TRUE => 1). Under the terms of AI-00325, this implementation is
not required to support such representation clauses.

c. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

d. The following 16 tests are not applicable because this
implementation does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55B09C B86001W
CD71O1F

e. C45231D, B86001X, and CD71O1G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONGINTEGER, or SHORTINTEGER.

f. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 48.

g. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

h. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

i. CA2009C, CA2009F, BC3204C, and BC3205D arenot applicable because
this implementation does not support separate compilation of
generic specifications, bodies, and subunits, if an instantiation
is given before compilation of its bodies or subunits. The
created dependency is detected at bind time.

j. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE.

k. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests)
are not applicable because this implementation requires a minimum
of 32 bits to represent floating point types.

1. CD2A61I and CD2A61J are not applicable because this implementation
does not support size clauses for array types, which imply
compression, with component types of composite or floating point

3-3

TEST INFORMATION

types. This implementation requires an explicit size clause on
the component type.

m. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support access types of less
than 32 bits.

n. CE2102D is inapplicable because this implementation supports
CREATE with INFILE mode for SEQUENTIALIO.

o. CE2102E is inapplicable because this implementation supports
CREATE with OUTFILE mode for SEQUENTIALIO.

p. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECTIO.

q. CE2102I is inapplicable because this implementation supports
CREATE with INFILE mode for DIRECTIO.

r. CE2102J is inapplicable because this implementation supports
CREATE with OUTFILE mode for DIRECTIO.

s. CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIALIO.

t. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUENTIALIO.

u. CE2102P is inapplicable because this implementation supports OPEN
with OUTFILE mode for SEQUENTIALI0.

v. CE21020 is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIALIO.

w. CE2102R is inapplicable because this implementation supports OPEN
with INOUT FILE mode for DIRECTIO.

x. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECTIO.

y. CE2102T is inapplicable because this implementation supports OPEN
. with INFILE mode for DIRECTIO.

z. CE2102U is inapplicable because this implementation supports RESET
with INFILE mode for DIRECTIO.

aa. CE2102V is inapplicable because this implementation supports OPEN
with OUT FILE mode for DIRECTIO.

ab. CE2102W is inapplicable because this implementation supports RESET
with OUT FILE mode for DIRECT IO.

3-4

TEST INFORMATION

ac. CE3102E is inapplicable because this implementation supports
CREATE with IN-FILE mode for text files.

ad. CE3102F is inapplicable because this implementation supports RESET
for text files.

ae. CE3102G is inapplicable because this implementation supports
deletion of an external file for text files.

af.*CE31021 is inapplicable because this implementation supports
CREATE with OUTFILE mode for text files.

ag. CE3102J is inapplicable because this implementation supports OPEN
with INFILE mode for text files.

ah. CE3102K is inapplicable because this implementation supports OPEN
with OUTFILE mode for text files.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 12 tests.

The following tests were split because syntax errors at one point resulted

in the compiler not detecting other errors in the test:

BA3006A BA3006B BA3007B BA3008A BA3013A

C34005G, C34005J, and C34006D required evaluation modifications because the
tests include some comparisons that use the 'SIZE attribute under
assumptions that are not fully supported by the Ada Standard and are
subject to ARG review. Thus, the AVO ruled that an implementation is
considered to have passed these tests if the only REPORT.FAILED output is
because of various 'SIZE checks. This implementation produced the messages
"INCORRECT TYPE'SIZE", "INCORRECT OBJECT'SIZE, and "INCORRECT BASE'SIZE"
for C34005G and the message "INCORRECT TYPE'SIZE" for C34006D.

C52008B required modification because this implementation does not support
a record type with four discriminants of type integer having default
values. The size of this object exceeds the maximum object size of this

3-5

TEST INFORMAI-IN

implementation and NUMERIC ERROR is raised. A subtype S INTEGER was
declared of type integer range 0..127 and the discriminants were declared
to be of type SINTEGER.

CD2CI1A and CD2C11B required modification because this implementation
requires a greater STORAGE SIZE than specified by the test. The amount of
storage specified by the STORAGE SIZE representation was changed from 1024
to 2048.

CE3804G required evaluation modifications because the value "-3.525" in the
test is not a model number of the declared type and thus the equality test
may legitimately fail, yielding the message "WIDTH CHARACTERS NOT READ -
FLOAT 3". In this implementation, the algorithm used by FLOAT I0 to
convert a character string to a hardware floating point value and the
algorithm used by the code generator to convert a UNIVERSAL REAL from the
low form to a hardware floating point value do not yield the same result.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by The IBM Development System for the Ada Language AIX/RT Follow-on,
Version 1.1, compiler was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of The IBM Development System for the Ada Language AIX/RT
Follow-on, Version 1.1, compiler using ACVC Version 1.10 was conducted
on-site by a validation team from the AVF. The configuration in which the
testing was performed is described by the following designations of
hardware and software components:

Host computer: IBM RT Follow-on
Host operating system: AIX, Version 3.1
Target computer: IBM RT Follow-on
Target operating system: AIX, Version 3.1
Compiler: The IBM Development System for the Ada

Language AIX/RT Follow-on, Version 1.1

A set of diskettes containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
diskettes. Tests requiring modifications during the prevalidation testing
were included in their modified form on the diskettes.

3-6

TEST INFORMATION

The contents of the diskettes were not loaded directly onto the host
computer. Since the host processor does not support a DOS capability, the
DOS diskettes were loaded onto a PC-AT. The DOS files were transferred,
using kermit, into an AIX directory on a 6150 Model 125 RT. The AIX
subdirectory structure mapped directly into the DOS subdirectory structure
contained within the DOS diskettes supplied by AVF.

After all the files were transferred onto the RT, a script was run which
changed the 8-character DOS names to 9-character AIX names which the ACVC
test scripts recognize. Then the ACVC tests were transferred to diskettes
using the AIX "backup" command and from these diskettes to the IBM RT
Follow-on machines using the AIX "restore" command.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the IBM RT
Follow-on. Results were transferred to the RT by means of diskettes, using
the AIX "backup" and "restore" commands. Results from the B2 tests were
printed directly from the RT using an IBM Proprinter III XL. The rest of
the results were transferred to the IBM 370 system using the IBM Token Ring
and the TCP/IP Communications Protocol. They were printed from the IBM 370
using a 3800 printer.

The compiler was tested using command scripts provided by International
Business Machines Corporation and reviewed by the validation team. The
compiler was tested using all the following option settings. See Appendix
E for a complete listing of the compiler options for this implementation.
The following list of compiler options includes those options which were
invoked by default:

-cg debug Specify that code generator debugging information
should not be produced.

-cg optimize Specify that the code generator may not perform
optimizations that may interfere with debug tools.

-optimize Turn off the global optimizer.

-monitor Operate silently, without progress messages.

+object Produce object code output (as opposed to assembly
code).

+virtual=3000 Specifies 3000 as the number of virtual pages

used by the virtual space manager.

+listing Generate source listings.

+bind Produce an executable from previously compiled
code. The Ada name of the main unit must also
be specified on the command line.

3-7

TEST INFORMATION

Tests were compiled, linked, and executed (as appropriate) using 3
computers. Test output, compilation listings, and job logs were captured
on diskettes and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Rockville MD and was completed on 29 November
1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

International Business Machines Corporation has
submitted the following Declaration of Conformance
concerning The IBM Development System for the Ada
Language AIX/RT Follow-on, Version 1.1 compiler.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementer: International Business Machines Corporation
Ada Validation Facility: ASDiSCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version : 1.10

Base Configuration

Base Compiler Name: IBM Development System for the Ada Language AIX/RT Follow-on
Version: 1.1
Host Architecture ISA: IBM RT Follow-on OS&VER#: AIX,3.1
Target Architecture ISA: IBM RT Follow-on OS&VER#: AIX,3.1

Implementer's Declaration

1, the undersigned, representing the IBM Corporation have implemented
no deliberate extensions to the Ada Language Standard ANSI MIL-STD-1815A in
the compiler listed in this declaration. I declare that the IBM Corporation
is the owner of record of the object code of the Ada language compiler listed
above and, as such, is responsible for maintaining said compiler in conformance
to ANSIi MIL-STD-1815A. All certificates and registrations for the Ada language
compiler listed in this declaration shall be made only in the owner's

c rtDnte:

International Business Machines Corporation
B.K. North, Manager, Ada Technology and Performance

Owner's Declaration

I, the undersigned, representing the IBM Corporation take full responsi-
bility for i/nplementation and maintenance of the Ada compiler listed above,
and agr4 t the public disclosure of the final Validation Summary Report.

Ideclar the Ada language compiler listed. and the host/target perform-
ance art mpliance with the Ada Lau- Standard ANSI/MIL-STD-1851A.

L, Qvk Z LL Date:
< Oviher's Signature and Titli > I
< To be completed upon availability of the VSR >

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-depenlent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of The IBM Development System for the Ada Language AIX/RT
Follow-on, Version 1.1, compiler, as described in this Appendix, are
provided by International Business Machines Corporation. Unless
specifically noted otherwise, references in this Appendix are to compiler
documentation and not to this report. Implementation-specific portions of
the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2_147 483 648 .. 2 147 483 647;
type SHORTINTEGER is range :32_768 .. 32_767; -

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONG FLOAT is digits 15 range -1.79769227807399E+308

1.79769227807399E+308;

type DURATION is delta 2**(-14) range -86_400.0 .. 86400.0;

end STANDARD;

B-i

Implementation- Defined Pragmas

Implementation dependent pragmas are:

* Pragma IMAGES (enumerationtype, < immediate > < deferred>);

Generates a table of images for the enumeration type. 'deferred' causes the table to be generated
only if the enumeration type is in a compilation unit.

* Pragma LINKNAME (< pragma INTERFACE subprogram name >, < linkname >);

When used in conjunction with pragma INTERFACE, provides access to any routine whose name
can be specified by an Ada string literal.

Predefined Pragmas

Supported pragrnas are INTERFACE, ELABORATE, SUPPRESS, PACK, PAGE, LIST, and
PRIORITY.

All pragnas have conventional meanings except LIST, which suppresses listings prior to Pragma

LIST(ON) regardless of the user request.

Pragma INTERFACE supports C and Assembly.

Unrecognized and unsupported pragmas are ignored with an appropriate warning message.

Representation Clauses

Supported representation clauses include:

1. Length clause
2. Enumeration Representation Clauses, except for boolean types
3. Record Representation Clause
4. Address Clause
5. Interrupt Support

Record representation clauses are aligned on 32-bit boundaries.

Restrictions on Representation Clauses

The hardware requires a minimum of 32 bits for floating point and address types.

Restrictions On Unchecked C ,nversion

UncheckedConversion between two types (or subtypes) A and B is permitted provided that A and
B are the same static size, and neither A nor B are private.

B-2

Package System

PACKAGE System IS

TYPE Address is access integer;

TYPE Name IS (TeleSoftAda);
SystemName : CONSTANT name : = TeleSoft_Ada;
StorageUnit : CONSTANT := 8;
Memory_Size :CONSTANT:= 1024*1024*256;

-- System-Dependent Named Numbers:
Minlnt : CONSTANT:= -(2 31);
MaxInt : CONSTANT := (2 ** 31) - 1;
Max_Digits CONSTANT := 15;
MaxMantissa: CONSTANT := 31;

.Fine Delta : CONSTANT := 1.0 / (2 ** (Max-Mantissa));
Tick : CONSTANT : = 0.00006;

-- Other System-Dependent Declarations
SUBTYPE Priority IS Integer RANGE 0.. 255;
MaxObject_Size : CONSTANT := (32'1024)-1;
MaxRecordCount : CONSTANT := (32*1024)-1;
MaxTextIoCount :CONSTANT := 16'1024;
MaxTextloField: CONSTANT:= 1000;

-- Other Types
TYPE SubprogramValue is

Record
EntryPoint : Address;
Static Base : Address;

End Record;

END System;

B-3

Representation Attributes

.AI define representation attributes shall be supported.

Convention Used For Generating Names

There are no implementation-generated names denoting implementation- dependent components.
Names generated by the compiler shall not interfere with programmer-defined names.

Implementation Defined Characteristics For Input-Output Packages.

Sequential 10, Direct_10, and Text 10 are supported.

LowLevel 10 is not supported.

File names follow the conventions and restrictions of the target operating system, except that non-
printing characters, like blank(' ') and asterisk ('*') are disallowed.

In Text_10, the type Field is defined as follows:
subtype Field is integer range 0..1000;

In Text 10 the type Count is defined as follows:
type Count is range 0..2147_483646;

Predefined Numeric Types

SHORT INTEGER

'First -32768
'Last 32767
'Size 16

INTEGER

'First -2147483648
'Last 2147483647
'Size 32

FLOAT

'Machine Overflows True
'Machine Rounds True
'Machine Radix 2
'Machine-Mantissa 24
'Machine Emax 128
'Machine-Emin -125
'Mantissa 21
'Digits 6
'Size 32
'Emax 84
'Safe Emax 124
'EpiJon 9.53674E-07
'SafeLarge 2.12676E + 37
'Safe Small 2.35099E-38
'Large 1.93428E + 25
'Small 2.58494E-26

B-4

LONG FLOAT

'.Machine Overflows True
'Machine-Rounds True
'Machine Radix 2
'.Machine-Mantissa 53
'Miachine-Emax 1024
'Machine-Emin -1024
'Mantissa 51
'Digits 15
'Size 64
"Emax 204
'Safe Emax 1020
'Epsilon 1.05285E-15
'Safe Large 1.0519E + 307
'Safe Small 1.42138E-307
'Large 1.50700E + 61
'Small 2.03633E-61

DURATION

'Machine Overflows false
'Machine Rounds false
'Delta 2**(-14)
'First -86400.0
'Last 86400.0

Restrictions on Machine Code Insertions

Machine code insertions are not supported.

Restrictions on Generics

Generic specifications, bodies and subunits may be divided into separate compilation units. The
following restrictions apply for the instantiation of generics:

* The generic bodies and subunits must be compiled prior to the generic instantiation.
* The sublibrary containing the generic bodies and subunits must be visible at the time of the

generic instantiation.

If either of the following conditions are not met, the compiler will generate a warning at compile
time and fail during the binding of the main program.

B-5

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$ACC SIZE 32
!n integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG ID1 (1..199 => 'A', 200 => '1')
An identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

$BIG ID2 (1..199 => 'A', 200 => '2')
In identifier the size of the
maximum input line length which
is identical to $BIG IDI except
for the last character.

$BIG ID3 (..100 => 'A', 101 => '3',
An identifier the size of the 102..200 => 'A')
maximum input line length which
is identical to $BIG ID4 except
for a character near the middle.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1.-100 => 'A', 101 => '4',
An identifier the size of the 102..200 => 'A')
maximum input line length which
is identical to SBIG ID3 except
for a character near-the middle.

$BIG INT LIT (1..197 => '0', 198..200 .> "298")
Kn integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (1..194 => '0', 195..200 => "69.0E1")
K universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

SBIG STRING1 (1 => '"', 2..01 => 'A', 102 => '"')
A string literal which when
catenated with $BIG STRING2
yields the image of $BIGIDl.

$BIG STRING2 (1 => '"' 2.100 => 'A', 101 => '1',
K string literal which when 102 => '")
catenated to the end of
SBIG STRING1 yields the image of
SBIG-ID1.

$BLANKS (1..180 => '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 2_147_483_646
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT MEM SIZE 268435_456
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT STOR UNIT 8
An integer literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME TELESOFT ADA
The - value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINE DELTA.

$FIELDLAST 1_000
A universal integer
literal whose value is
TEXT IO.FIELD'LAST.

$FIXED NAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONG FLOAT.

$GREATER THAN DURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 131_073.0
A universal real literaT that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY 255
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 BADCHAR*-/%
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 /NONAME/DIRECTORY
An external- file name which
is too long.

$INTEGER FIRST -2 147_483_648
A universal integer literal
whose ialue is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGER LAST 2_147_483_647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 2 147_483_648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHAN DURATION -100_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_ THANDURATION BASE FIRST -131 073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW PRIORITY 0
in integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA DOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

SMAX IN LEN 200
Maximum input line length
permitted by the implementation.

$MAX INT 2_147_483_647
; universal integer literal
whose value is SYSTEM.MAXINT.

$MAX INT PLUS 1 . 2147483648
A unive-rsal integer literal
whose value is SYSTEM.MAXINT+.

SMAX LEN INT BASED LITERAL (l..2 => "2:", 3..197 => '0',
; universal - integer based 198..200 .> "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be SMAXINLEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

SMAX LEN REAL BASEDLITERAL (1.-3 => "16:", 4.-196 => '0',
X universal real based literal 197..200 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be $MAXINLEN long.

$MAX STRING LITERAL (1 => '"', 2..199 => 'A', 200 => '"')
X strIng literal of size
$MAX IN LEN, including the quote
characters.

$MIN INT -2 147_483_648
A universal integer literal

whose value is SYSTEM.MIN INT.

SMIN TASK SIZE 32
Ain integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCH TYPE AVAILABLE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG_FLOAT, or LONGINTEGER.

$NAME LIST TELESOFT ADA
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG BASED INT 16#FFFFFFFE#
; based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEW MEM SIZE 268_435_456
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
SDEFAULT MEM SIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEW STOR UNIT 8
in integer.literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEW SYS NAME TELESOFT ADA
' value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value of that
type, then use that value.

$TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.00006
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 36.-

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

D-1

WITHDRAWN TESTS

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84M..N, and CD5O11O (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2Bl5C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

j. CD2D11B: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

k. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

1. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

n. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

o. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

D-2

WITHDRAWN TESTS

p. CE21071: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATAERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

q. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

r. CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARDINPUT (lines 103, 107, 118,
132, and 136).

s. CE3411B: This test requires that a text file's column number be set-to
COUNT'LAST in order to check that LAYOUTERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY IBM

Compiler: The IBM Development System for the Ada Language
AIX/RT Follow-on, Version 1.1

ACVC Version: 1.10

E-1

Give a description of any compiler options or switch settings used in running the tests, which
do not use the default setting.

The 'tkada" command is used to invoke the AIX/RT follow-on compiler. The input to the
compiler is a file containing one or more Ada compilation units. Compilation is controlled
by the uptions selected.

The syntax of the tkada command is:

tkada <options> <file or unit-name>

where:

file This is the name of the Ada source file. The compiler assumes
the default extension of ".ada" if none is present

+ assembly = < name > Produces assembly code output. < name > defaults to the source
file name. Note that the assembly file produced contains a con-
catenation of all assembly code produced, and thus may not be
legal format for the assembler. This will occur most often in the
case of main unit compilations, where the MAIN elaboration
code and the main program code will be concatenated into the
same file.

+ bind Produce an executable from previously compiled code. The Ada
name of the main unit must also be specified on the command
line.

+ bind < unit-name> Bind the named unit as a main program, after compiling the
source file also specified on the command line. The unit to be
bound as main need not have been compiled in the named source
file, although this is allowed.

-cgdebug Specify that code generator debugging information should not be
performed. This is the default setting.

-cg optimize Specify that the code generator may not perform optimizations
that may interfere with debug tools.

+ copy Copy the source file into the 'src' subdirectory of the working
sublibrary. This is the default. When + copy is used, the banner
displayed by the compiler will show that the source file is the
copy in the "src' subdirectory of the working sublibrary.

-copy Do not copy the source file in to the "src" subdirectory of the
working sublibrary.

+ cleanup Reset the working sublibrary. Use this option to clear the
working sublibrary after a previous compilation has been killed.
Any other options specified in the same command are ignored.

+ include - < name > Include the named object code or archive file in the linking of the
main program. This option can be used to specify that non-
standard object code libraries contain library routines needed by
the Ada program. <name> may also specify an option to be
sent to the AIX linker invoked to build the main program. This
option is ignored if neither ' + main' nor "+ bind" was specified
for the compilation. If more than one file or option is to be
specified to the linker, use " + include' once for each one.

E-2

+ instr{ = produce) Indicate that the main program being built will produce an
instrumentation output file reporting basic block profiling infor-
mation when run. An AIX script file with the form < out-
name> .ins will be generated which will reinvoke the compiler to
take advantage of profiling information. "< out-name > is se-
lected with the + out option and defaults to MAIN.

+ level <num > Select the optimizatioin level to be used. <num > may be 0, l,or
2. + level 0 performs the fewest optimizations and provides the
fastest compilation speed; + level_2 performs the most opti-
mizations and requires the most compilation time. This option
may be abbreviated by omitting characters between '+ 1 and
< num >.

+ library < lib> Specify the Ada library list name (defaults to liblst.alb). N.B.

The library name liblst.tmp' is reserved and should not be used.

+ listing Generate Source Listings.

-link Quit without linking an executable. Valid only with "+ main'
or '+ bind'. The linker script (with the name < out-name> .lnk
can be executed separately to invoke the linkage step.

+ main Compile the named source file, and bind the last unit in the file

as a main program.

+ monitor Same as + verbose

-monitor Same as -verbose

+ verbose Print progress messages during compilation.

-verbose Operate silently, without progress messages.

+ object Produce object code output (as opposed to assembly code).

+ out = < output > Specify the name to be given to the executable output and infor-
mational files. The default is MAIN. < output > should not be
more than 6 characters long.

+ optimize Turn on the global optimizer.

-optimize Turn off the global optimizer.

+ pre process = < option > Enables compilation of source code lines identified by -- (< op-
tion >) comments.

-preprocess = <option> Disables compilation of source code lines identified by -- (< op-
tion >) comments.

+ save Do not delete the < out> .Ink file used to link the main program.
This option is valid only with '+main' or '+bind". The
< out> .Ink file may be re-invoked separately to re-link the main

program without invoking the compiler.

+ virtual = < num > Specify the number of virtual pages used by the virtual space
manager. A larger number allows faster compilation speed, but
demands more memory from the host system. In general, de-
crease ' + virt' if the compiler runs out of memory, and increase
' + virt' for systems with an abundance of memory (page space).
The default is 3000.

Each option can be abbreviated to the first three characters.

E-3

